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STRUCTURE OF THE SINGULAR TERMS IN THE FREE ENERGY 

CORRECTLY REPRODUCING THE NONASYMPTOTIC CORRECTIONS 

TO THE THERMODYNAMIC FUNCTIONS 

V. A. Rykov UDC 536.71 

The method for selecting the structure of the singular terms in the expression 
for the free energy correctly reproducing the nonasymptotic components of the 
thermodynamic functions is examined. 

The problem of describing a wide neighborhood of the critical point with the help of uni- 
fied nonanalytical equations of state is solved in [1-13]. In these works, the starting ther- 
modynamic functions -- the internal energy u(p, T) [1-6], the enthalpy i(p, T) [7, 8], the 
chemical potential ~(p, T) [9], the isochoric heat capacity Cv(P, T) [i0], and the Helmholtz 
free energy F(p, T) [11-13] -- are represented in the form of two terms: an irregular term 
satisfying a power law of the scaling theory (ST) and a regular function describing the char- 
acteristic features of the thermodynamic surface in the region of low densities and pressures. 

The singular components of the equations of state [1-13] enable describing qualitatively 
correctly, i.e., in accordance with the requirements of the ST, the behavior of the thermody- 
namic surface only in an asymptotic neighborhood of the critical point: l ap in<0 ,06 ,  T~.~0,01. 
At the same time, according to [14, 15], in describing the properties of pure substances (in 
our case liquid--vapor systems) auxiliary nonanalytical terms, taking into account the next ap- 
proximations of ST, must be included in the structure of the equations of state. These cor- 
rection terms are calculated in [16] by the e expansion method up to terms of order e2. In 
accordance with the results of [16, 17], the behavior of a number of thermodynamic functions 
on characteristic lines of the thermodynamic surface is described in the critical region by 
the following power laws: 

KT (Pe T) = q~o~ -~ + qb1~--~+A, 

C~ (Pc' T) : fo'~ -~  + f ~  -~+*x + f2, 
A ~-~+ -- 

P(9, Te]--P(Pe, r e ) =  P~@l@l ~-~ + PxAo IApl ~, 
A 

~t (p, T e ] - -  ~x (lee, Te) = RoAp I@18-* + R,@ I@ 18-*+ ~ 

(i) 

(2) 

(3) 

(4) 

Here Go, Fo, Po, Ro are the constant coefficients in front of the asymptotic terms of the ex- 
pressions (1)-(4), ~i, PI, Px, RI are the constant coefficients in front of the nonasymptotic 
correction terms in the expressions (1)-(4). 

The structure of the nonasymptotic terms has now been established only for the scale 
equations of state in parametric form: 
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Abe(9, T) = ar~O (1 - -  02) -1- er~+AO, (5)  

T =~ r (1  --b~0~),  Ap = kr~O, (6 )  

where r is a variable characterizing the distance from the critical point, 0 is an "angular" 
variable; and, b~= (7--2~)/?/(i--2~). 

In constructing the wide-range nonanalytical equations of state, however, singular terms 
in the starting thermodynamic functions, written not in a parametric form but rather in terms 
of physical variables density-temperature [1-6, 10-13] or pressure--temperature [7-9] are used. 

A method for constructing the singular components of the free energy in the density--tem- 
perature variables is proposed in [13]. But the region where the thermodynamic surface is 
described by the nonanalytical components of the free energy obtained in [13] is bounded by 
the asymptotic neighborhood of the critical point. A method for calculating the additional 
singular components in the starting thermodynamic functions, "responsible" for the nonasymp- 
totic corrections to the thermodynamic quantities (see, for example, (1)-(4)), however, still 
does not exist. We shall show that this method can be based on the combined analysis of the 
asymptotes of the singular component of the free energy and power-law functionals with non- 
integer exponents. 

We shall represent Helmholtz's free energy, which in the density-temperature variables 
is the characteristic function, in the form of a sum of two terms: 

F(~, T) = r,"'F~ (p, T) + F~ (9, V), (7) 

where 0nIFi(P, T) and Fp(0, T) are the irregular and regular components of the free energy, 
respectively. 

It is desirable to represent the irregular component of the free energy Fi(0, T) in the 
form of a sum of two functions: 

F~ 0,, T) -- F~  (p, T) + F~ (~, T). (8) 

The function Fit(0 , T) entering into the formula (8) must reproduce the asymptotic terms 
of relations (1)-(4), while the function Fi2 (0, T) must describe the nonasymptotic terms of 
the thermodynamic functions of these relations. The procedure for calculating Fil(O, T) is 
examined in detail in [13]. 

To determine the structure of the nonasymptotic singular components of the free energy 
Fi2(P, T), we shall elucidate the nature of the behavior of its derivatives in the critical 
region. We substitute the expression (8) into thewell-known thermodynamic equalities p = 
=92(OpF/Op)T ' ~-~1 =9(OP/Oo)T ' ~ = ( 0 9 F / 0 9 )  T and pCvT--T(O29F/OT2)v.,  Then we compare the ex- 
pressions found for the isothermal compressibility, isochoric heat capacity, pressure, and 
chemical potential with the scaling laws, describing the behavior of the substance on the 
characteristic lines of the thermodynamic surface Ag=0 , T=0, T=Ts(9) (see the expressions 
(1)-(4)). As a result we find that the function Fi2(p, T) correctly reproduces the nonasymp- 
totic corrections to the thermodynamic functions (1)-(4) in the case when in the vicinity of 
the critical point its partial derivatives have the following asymptotes: 

2 2 I~ (OF~ 2!Oo)T,~=o ~ Ap IAPI , (o F~ dOT )o,~=o N IAr, I 
? + A  

(O~FiUOODT,,<=O ,-., iAlo I r~ , 

( 9 )  

(i0) 

(O2Fi "lOT~')o, Ao=o "~ [~[--=+A, (0SFi j0p2)  T,An=O ~ Ivl v+A" 
(ii) 

Here x=T/iAp]I/l~ is a scaling variable; x =--xo is the equation of the curve of coexis- 
tence, valid in a small neighborhood of the critical ooint. 

The characteristic behavior of the function Fi=(0, T), according to the dependences (9)- 
(ii), is described by power laws with noninteger exponents. The solution of the problem posed 
must therefore be sought in the class of power-law functionals. 
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We represent the function Fi2 
studied in [13]: 

Fi~ (P, T) = Z 1 (p, T) ~', 
Fi: ~ (p, T) = (Z 1 (0, T) -]-  Z 2 (0, T) ~' )t', 

Fi., (p, T )=  X K,~Zn (p, r )~ '+  ~ D,~Z,~ (p, T) ~', 
n = |  ~=I 

(0, T) in the form of power-law functions, analogous to those 

(12) 

(13) 

(14) 

where 

Z, (9, T)= X A'fr*~AP~J' Z~ (9, T)= ~ B,fr%Apn~,... 
, i=o ~,i=o 

H e r e  ~ 0  = ~o : ~ o  : ~o  : 0 ;  Aoo  : 0 ;  q'o < {~I < . . . .  ; ~ 0  ~ ~I < " " " ; $0 ~ $1 < " ' �9 ; ~0  < ~1 < " " " ; Ai.~, 

Bi~, K., D~ are  cons tan t  c o e f f i c i e n t s ;  and ~i, *~, ~j, ~ ,  e j  are  r e a l  exponents .  

It is evident that for small values of r and AO the characteristic features of the ir- 
regular function Fi2(p , T) and its derivatives are determined by the terms (12)-(14) with the 
lowest values of the exponents (pi, ej, ~ and ~j. The problem posed thereby reduces to deter- 
mining the quantities ~i, el,@l, ~,, ~ and ~2 in terms of the critical indices a, ~, 8, and y. 

We shall show that it can be solved based on the proposed method for determining the 
structure of the nonasymptotic terms in the free energy Fi= (p, T). We shall first analyze 
the expression (13), from which follow immediately the values of the derivatives of the func- 
tion Fi=(p, T) presented below: 

( o~.~ ~ : ~, (Z~ (p, T) + Z2 (P, T) ~' ?'- 'Z~ (p, T), 
Oo /r 

( O:Fi'~ I " 

OO 2 / r  ~,(~,--1).(Z~(p, T ) + Z ~ ( 9 ,  T) ~" )~'-~Z3(o, T) = + (15) 

-}- ~1 (Z1 (P, T) -[- Z 2 (p, T) ~ )~'-' [ ~ Auz'P,AO~j -2 , ej (ej 2 I) + 
i , i = 0  OK 

i , /=O OK ~ i  ,1=0 ' OK ' 

O'Fi" 
OT2 ] o= ~t (~t - 1) (Z x (9, T) + Z2 (P, T) ~ )t,-2 • 

i , / '=0 

+ ~,(z,(p, v ) +  z~(p, v) t' )t '- '  i ]~ A'~'~-=A~'~Jq~'(q~'--1) + , 
~,j=o T~ 

(16) 

( ~ B .T*i-2A ̂ ~i ~ (~f----- 1)) + ~, k,,.~ ~ . v r~ �9 z,,.(p, r ?  ,-~ + 

" i , j =O ~ / 

(17) 

where 

Z3 (9, T) sign (Ag) [ X A~fr~AP~J-~" ei 
[ ,i=o 9~ "i i=o P~ 

Z2 (9, T) L,-1 I " 

We shall analyze simultaneously the expressions for the partial derivatives of the func- 
tion Fi2(p , T) (15)-(17) and the scaling relations (9)-(11). We substitute T = 0 into (15) 
and (16) and find that the corresponding relations (9) and (I0) hold if the following equali- 
ties hold: 
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Of, ~h ~" 

0,04 

0 

-o,o~ 

-2 -1 0 [O(• 

Fig. I. Deviation of the scaling func- 
tions of the isochoric heat capacity 
fo(x) and chemical potential ho(x), cal- 
culated based on the scaling function 
of the free energy (29) of this work 
(A~ = --27.777,:B~ = --3.6985, C =--0.4482, 
x~ = 0.5608, x= = 0.6433), from the cor- 
responding scaling functions f(x) and 
h(x) of [17] for argon. The dependences 
of the deviations ~f = (fo--f)/fo (i) and 
~h = (h~--h)/ho (2) are shown as a func- 
tion of the scaling variable x. 

~ = 6 + l + - - A  = 2 + ~ ? + A  (18) 

It also follows from (16) that e~ = ! or e: = 2. In the opposite case, on the critical 
isochore A0 = 0 the derivative (02Fi~/ap2)T either vanishes (ex < 2) or diverges (ci ~2 and 
e~ r which contradicts (ii). 

On the other hand, if A1o~=0, then it follows from (17) that ~, = I or % = 2, 

since in the opposite case with T= 0 the derivatives (02Fi2/OT~)p either diverges (%<2and%~l) , 

or vanishes (%>2), which contradicts the corresponding expression (9)-(I0). But then, ac- 

acording to the expression (ii), the equality %~ = 2--~@ A must hold on the critical iso- 
chore (see (17)), which contradicts the conditions (18) found above for the exponents El, ~I 
and the critical indices B, ~, A. The contradiction is resolved if in expression (13) and 
correspondingly in the formulas (15)-(17) the equalities A~o = O, Aox =/=0 or A:o~O, Aol = 0 
hold. Both indicated variants were studied. It turned out that if Axo~=O, Aol = 0, then 
the solution of the problem stated in the class of power-law functions (13) does not exist. 
In what follows we shall therefore assume that Axo = 0, Ao~=~ 0. 

In this case it follows from (17) that ~I = 1 or ~2 = 2, since if ~I < 2 and @= ~I, 
then the derivative (O~fi~]OT~)o diverges on the critical isotherm and vanishes for ~ > 2, 
which contradicts (9). Now we substitute into (17) A0 = 0, and comparing with the correspond- 
ing dependence (Ii) we obtain one more coupling condition for the exponents ~:, ~x, ~= and 
the critical indices a, A: 

~1~1~2 = 2 - -  = @ A. (19) 

On the other hand, in the limit A0 § 0 it follows from the expressions (I0) and (17) that 
if ~ = i, then the equality 

~ (~1 -- 1) = ? -1- A (20) 

must hold. If however, ~ = 2, then 

~ 2  (~1 - -  2) = ~ q- A. ( 2 1 )  

In order to describe correctly the behavior of the nonasymptotic term of the isochoric 
heat capacity on the critical isotherm (see (9), (17)), it is sufficient to demand that in 
the case ~: = 1 the equality 

~i (~J~2 -- I) = (-- = @ A)/~, (22) 

hold, while for ~I = 2 

~i (~1~2 -- 2) = (-- ~ @ A)/~. (23) 
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We now substitute the dependence ~=--x0[Agi I/~ into (16) and (17), and we find that in 
order to satisfy the relations (Ii) on the coexistence curve x =-xo, it is sufficient to re- 
quire that the following equalities hold: 

e~t = 2 + (7 + A)/~, ~ 2  = 2 -- e + A. (24) 

Using Griffith's equalities 2--= = ~8-~, ? = ~6 -- ~ , we obtain from the relations (18)- 
(24) a system of equations enabling the calculation of the values of the exponents e~, ~, 
~i, ~, ~t in terms of the critical indices: 

where the parameters e~ and ~ assume the values 1 or 2. 

Thus based on the combined analysis of the derivatives of the function Fi~@, T) (15)- 
(17) and the scaling relations (9)-(11) in the class of power'law functions (13) the struc- 
ture of the singular component of the free energy F~(p, T), satisfying the requirements (1)-(4) 
has been determined: 

Fi,  (9, T) = [Ao, A9 ~' --H (Bo~v *~ + BlO lap  I n. )~21~', (26)  

where the components ex, ~, ha, g~ and g2 are determined from the system of equations (25). 

An analogou s method for choosing the structure of the nonasymptotic terms of the thermo- 
dynamic functions was used in the analysis of the power-law functions (i0) and (14). It turned 
out that in the class of power-law functions (12) the problem posed does not have a solution. 
In the class of functionals (14) the following structural forms of the function Fia(p , T), 
satisfying all requirements (9)-(11) and, therefore, the scaling relations (1)-(4), were 
found: 

Fi~ (9, T) = %z2K~ (Ao~ ~' + A.o IA9t ~' )~' + ~ O~ (Bo~ *~ + B~o [1~1 ~* )~', (27) 
n = l  n ~ l  

where 
tions: 

A0~, A~0, B0~, Bn0>0; %, m~, ~t, ~t, qi, ~ are real numbers satisfying the coupling condi- 

{Pi~l = 2 - -  = -k A, coi~ 1 = 1 --1- 8 -1- A][~, % = 1 or ~, 
(28) 

The nonasymptotic terms of the free energy (26) and (27), obtained in this work, to- 
gether with the asumptotic terms Fii(p, T) calculated in [13], enable describing in the physi- 
cal variables density--temperature the scaling properties of pure substances in a wide neigh- 
borhood of the critical point: 0.7pc < p < 1.3pc in the density and from the curve of coexist- 
ence to 1.3T c in the temperature [17]. 

We note that all solutions found (see expressions (26) and (27)) can be divided into two 
groups. The first group includes the singular terms of the free energy (26) and (27) in which 
8~=~I=~i=i. I~ this case the isotherms are discontinuous in the two-phase region on the 
lines Aoi@-f-Aio]Apli/~=O or Bo~-f-BioIApll/~=O, , which can be interpreted as the "pseudo- 
spinodal" curves [18]. In the case 8i= ~i=~i= 2 we obtain the second group of singular 
terms in the free energy. The isotherms calculated on the basis of the indicated group have 
the form of thevan derWaals equation. In this sense the second group of singular terms of the 
free energy reproduces the thermodynamic surface just as the scaling equation of state in 
parametric form [19, 20], which gives rise to the appearance of only one singular point --the 
critical point -- on the thermodynamic surface. 

A comparative analysis of the singular terms obtained in the free energy (27) as well as 
the scaling functions of the isochoric heat capacity and chemical potential, calculated on 
their basis, with the corresponding functions obtained from the equation of state (5) showed 
that the dependence 

2- A 

Fi= (p, T) = lap] ~+i+ T[A,  ((x -kxi) 2-~+a -1- e (x -}- x2) 2-~+a) q-B1 (xq-  &)v+A q_ C], (29)  

where E = --xl/x= reproduces most fully the nonasymptotic terms of the thermodyanmic functions. 
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For example, for argon in a wide neighborhood of the critical point the disagreement be- 
tween the scaling functions of the isochoric heat capacity and chemical potential, calculated 
on the basis of expression (29), and the scaling functions of the parametric equation of state 
(5) (see, for example, [17]) 

h, (x )  = eO ( k  IOl) -~-~, f (x) - 

~--A 

_ __ek (? + A) (klOI) ~ (30) 
2b~ 1 - -  (1 - -  2[5) b20 ~ 

does not exceed 9.8 and 6.8%, respectively (see Fig. i). 

NOTATION 

u, internal energy; i, enthalpy; ~, chemical potential; Cv, isochoric heat capacity; F, 
free energy; p, density; T, absolute temperature; p, pressure; KT, isothermal compressibil- 
ity; Pc and Tc, critical parameters; f(x) and h(x), scaling functions of the isochoric heat 
capacity and chemical potential; x=~/IAPl I#- , a scaling variable; a, e, and k, constants char- 
acterizing the singularities of the given substance; x =--xo, equation of the coexistence 
curve; ~, B, a, y,A, critical indices; r and0, "polar" coordinates; and A~:=(p--p~/pc;~=(T--Tc)/Tc 
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HEAT EMISSION ACCOMPANYING THAWING OF A VERTICAL ICE SURFACE 

E. S. Gogolev UDC 551.468.1:536.24 

A dependence is proposed for determining the heat-transfer coefficient at the 
boundary of an ice massif and a water film running down the ice in the pres- 
ence of thawing. 

Heat transfer from air to an ice massif during the summer occurs through the liquid film 
which is formed and runs down the surface of the ice. This films plays the role of a thermal 
insulator for the ice massif. It runs down under the action of gravity, and its flow has a 
wave character [i, 2]. The thickness of the film varies over the height, so that the coeffi- 
cient of heat transfer must be regarded as variable, which causes nonuniform thawing of the 
ice massif: thawing will be greater at the top than at the bottom. 

Thawing of vertical surfaces was studied previously in [3, 4], but the factor responsi- 
ble for this process was assumed to be film condensation. This enabled assuming that the 
boundary temperature at the outer surface of the thawing medium is equal to the condensation 
temperature. The solutions are presented in a form such that a computer is required to ob- 
tain numerical results; in addition, the deviation of the results from the exact solution un- 
der some conditions reaches 20% [4]. 

Figure 1 shows the diagram for the calculation of the magnitude of the thawing of a ver- 
tical wall of an ice massif. 

The heat flow from the air to the liquid film formed is determined by the expression 

q a i r  = ~ air (Ta - -  Ts)" (1)  

T h i s  h e a t  i s  t r a n s f e r r e d  t h r o u g h  t h e  l i q u i d  f i l m  to  t h e  i c e  m a s s i f ,  w i t h  t h e  e x c e p t i o n  o f  a 
s m a l l  f r a c t i o n  e x p e n d e d  on i n c r e a s i n g  t h e  h e a t  c o n t e n t  o f  t h e  l i q u i d  v o l u m e .  

The h e a t  f l o w  t h r o u g h  t h e  l i q u i d  f i l m  i n  t h e  s e c t i o n  x i s  e q u a l  t o  

q = ax (78 - -  Tin). (2)  

This quantity can be expressed differently for a laminar fluid motion: 

q =  6x (Ts--Tm)"  (3)  

V. P. Chkalov Gor'kov Civil Engineering Institute. Translated from Inzhenerno-Fizi- 
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